Asian Journal of Sports Medicine

Published by: Kowsar

The Isokinetic and Electromyographic Assessment of Knee Muscles Strength in the Short- and Long-Term Type 2 Diabetes

Ahmadreza Askary-Ashtiani 1 , Ali Ghanjal 2 , Monireh Motaqi 3 , Gholam Hossein Meftahi 4 , Boshra Hatef 4 , * and Hoda Niknam 5
Authors Information
1 Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
2 Health Management Research Centre, Department of Physical Medicine and Rehabilitation, Baqiyatallah University, Tehran, Iran
3 Departement of Basic Science, Rehabilitation Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
5 Department of Physical Therapy, Tarbiat Modares University, Tehran, Iran
Article information
  • Asian Journal of Sports Medicine: December 01, 2016, 7 (4); e37008
  • Published Online: October 8, 2016
  • Article Type: Research Article
  • Received: February 8, 2016
  • Revised: May 9, 2016
  • Accepted: May 17, 2016
  • DOI: 10.5812/asjsm.37008

To Cite: Askary-Ashtiani A, Ghanjal A, Motaqi M, Meftahi G H, Hatef B, et al. The Isokinetic and Electromyographic Assessment of Knee Muscles Strength in the Short- and Long-Term Type 2 Diabetes, Asian J Sports Med. 2016 ; 7(4):e37008. doi: 10.5812/asjsm.37008.

Copyright © 2016, Sports Medicine Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004; 53(6): 1543-8[PubMed]
  • 2. Andersen H, Poulsen PL, Mogensen CE, Jakobsen J. Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications. Diabetes. 1996; 45(4): 440-5[PubMed]
  • 3. Bokan V. Muscle weakness and other late complications of diabetic polyneuropathy. Acta Clin Croat. 2011; 50(3): 351-5[PubMed]
  • 4. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006; 55(6): 1813-8[DOI][PubMed]
  • 5. I. Jzerman TH , Schaper NC, Melai T, Meijer K, Willems PJ, Savelberg HH. Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Res Clin Pract. 2012; 95(3): 345-51[DOI][PubMed]
  • 6. Chisari C, Piaggesi A, Baccetti F, Licitra R, Rossi B. Muscle modification in asymptomatic diabetic neuropathy: a surface electromyographic study. Basic Appl Myol. 2002; 12(5): 177-81
  • 7. Hatef B, Ghanjal A, Meftahi GH, Askary-Ashtiani A. Isokinetic and Electromyographic Properties of Muscular Endurance in Short and Long-Term Type 2 Diabetes. Glob J Health Sci. 2016; 8(8): 210-9[DOI][PubMed]
  • 8. Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001; 50(6): 1324-9[PubMed]
  • 9. Halvatsiotis P, Short KR, Bigelow M, Nair KS. Synthesis rate of muscle proteins, muscle functions, and amino acid kinetics in type 2 diabetes. Diabetes. 2002; 51(8): 2395-404[PubMed]
  • 10. Hawley J, Zierath J. Physical activity and type 2 diabetes: therapeutic effects and mechanisms of action. 2008;
  • 11. Marin P, Andersson B, Krotkiewski M, Bjorntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994; 17(5): 382-6[PubMed]
  • 12. Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Lond). 2005; 29 Suppl 2-5[PubMed]
  • 13. Wood RJ, O'Neill EC. Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone. J Nutr Metab. 2012; 2012: 268197[DOI][PubMed]
  • 14. Batsis JA, Buscemi S. Sarcopenia, sarcopenic obesity and insulin resistance. 2011;
  • 15. Andreassen CS, Jakobsen J, Flyvbjerg A, Andersen H. Expression of neurotrophic factors in diabetic muscle--relation to neuropathy and muscle strength. Brain. 2009; 132: 2724-33[DOI][PubMed]
  • 16. Christie A, Greig Inglis J, Kamen G, Gabriel DA. Relationships between surface EMG variables and motor unit firing rates. Eur J Appl Physiol. 2009; 107(2): 177-85[DOI][PubMed]
  • 17. Wang R, Fukuda DH, Stout JR, Robinson EH, Miramonti AA, Fragala MS, et al. Evaluation of Electromyographic Frequency Domain Changes during a Three-Minute Maximal Effort Cycling Test. J Sports Sci Med. 2015; 14(2): 452-8[PubMed]
  • 18. Butugan MK, Sartor CD, Watari R, Martins MC, Ortega NR, Vigneron VA, et al. Multichannel EMG-based estimation of fiber conduction velocity during isometric contraction of patients with different stages of diabetic neuropathy. J Electromyogr Kinesiol. 2014; 24(4): 465-72[DOI][PubMed]
  • 19. Watanabe K, Miyamoto T, Tanaka Y, Fukuda K, Moritani T. Type 2 diabetes mellitus patients manifest characteristic spatial EMG potential distribution pattern during sustained isometric contraction. Diabetes Res Clin Pract. 2012; 97(3): 468-73[DOI][PubMed]
  • 20. Sacchetti M, Balducci S, Bazzucchi I, Carlucci F, Scotto di Palumbo A, Haxhi J, et al. Neuromuscular dysfunction in diabetes: role of nerve impairment and training status. Med Sci Sports Exerc. 2013; 45(1): 52-9[DOI][PubMed]
  • 21. Gomes AA, Onodera AN, Otuzi ME, Pripas D, Mezzarane RA, Sacco IC. Electromyography and kinematic changes of gait cycle at different cadences in diabetic neuropathic individuals. Muscle Nerve. 2011; 44(2): 258-68[DOI][PubMed]
  • 22. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010; 33(12): 147-67[DOI][PubMed]
  • 23. Schellenberg F, Oberhofer K, Taylor WR, Lorenzetti S. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training. Comput Math Methods Med. 2015; 2015: 483921[DOI][PubMed]
  • 24. Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol. 2012; 112(1): 267-75[DOI][PubMed]
  • 25. Lanza IR, Nair KS. Muscle mitochondrial changes with aging and exercise. Am J Clin Nutr. 2009; 89(1): 467S-71S[DOI][PubMed]
  • 26. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J Appl Physiol (1985). 1997; 83(5): 1581-7[PubMed]
  • 27. Sreekumar RNK. Skeletal muscle mitochondrial dysfunction and diabetes. Indian J Med Res. 123(3): 339-410
  • 28. Ena J, Lozano T, Verdu G, Argente CR, Gonzalez VL. Accuracy of ankle-brachial index obtained by automated blood pressure measuring devices in patients with diabetes mellitus. Diabetes Res Clin Pract. 2011; 92(3): 329-36[DOI][PubMed]
  • 29. Smith KA, Gallagher M, Hays AE, Goss FL, Robertson R. Development of the physical activity index as a measure of total activity load and total kilocalorie expenditure during submaximal walking. J Phys Act Health. 2012; 9(6): 757-64[PubMed]
  • 30. Hatef B, Bahrpeyma F, Vaziri P. Muscle isokinetic strength and endurance in short-and long-term type 2 diabetes. Isokinetics and Exercise Science. 2014; 22(4): 295-301
  • 31. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000; 10(5): 361-74[PubMed]
  • 32. Gabriel DA, Christie A, Inglis JG, Kamen G. Experimental and modelling investigation of surface EMG spike analysis. Med Eng Phys. 2011; 33(4): 427-37[DOI][PubMed]
  • 33. Gabriel DA, Kamen G. Experimental and modeling investigation of spectral compression of biceps brachii SEMG activity with increasing force levels. J Electromyogr Kinesiol. 2009; 19(3): 437-48[DOI][PubMed]
  • 34. Hermens HJ, Bruggen TA, Baten CT, Rutten WL, Boom HB. The median frequency of the surface EMG power spectrum in relation to motor unit firing and action potential properties. J Electromyogr Kinesiol. 1992; 2(1): 15-25[DOI][PubMed]
  • 35. Farina D, Fosci M, Merletti R. Motor unit recruitment strategies investigated by surface EMG variables. J Appl Physiol (1985). 2002; 92(1): 235-47[PubMed]
  • 36. Gaster M, Poulsen P, Handberg A, Schroder HD, Beck-Nielsen H. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000; 278(5): 910-6[PubMed]
  • 37. He J, Watkins S, Kelley DE. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes. 2001; 50(4): 817-23[PubMed]
  • 38. Axelson HW, Melberg A, Ronquist G, Askmark H. Microdialysis and electromyography of experimental muscle fatigue in healthy volunteers and patients with mitochondrial myopathy. Muscle Nerve. 2002; 26(4): 520-6[DOI][PubMed]
  • 39. Jansen R, Ament W, Verkerke GJ, Hof AL. Median power frequency of the surface electromyogram and blood lactate concentration in incremental cycle ergometry. Eur J Appl Physiol Occup Physiol. 1997; 75(2): 102-8[DOI][PubMed]
  • 40. Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006; 29(4): 895-900[PubMed]
  • 41. Giombini A, Menotti F, Laudani L, Piccinini A, Fagnani F, Di Cagno A, et al. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males. Biol Sport. 2015; 32(3): 243-7[DOI][PubMed]
  • 42. Dahmane R, Djordjevic S, Smerdu V. Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods. Med Biol Eng Comput. 2006; 44(11): 999-1006[DOI][PubMed]
  • 43. Garrett WE, Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984; 12(2): 98-103[PubMed]
  • 44. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol (1985). 2004; 96(4): 1486-95[DOI][PubMed]
  • 45. Hatef B, Bahrpeyma F, Mohajeri Tehrani MR. The comparison of muscle strength and short-term endurance in the different periods of type 2 diabetes. J Diabetes Metab Disord. 2014; 13(1): 22[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments