Asian Journal of Sports Medicine

Published by: Kowsar

The Isokinetic and Electromyographic Assessment of Knee Muscles Strength in the Short- and Long-Term Type 2 Diabetes

Ahmadreza Askary-Ashtiani 1 , Ali Ghanjal 2 , Monireh Motaqi 3 , Gholam Hossein Meftahi 4 , Boshra Hatef 4 , * and Hoda Niknam 5
Authors Information
1 Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
2 Health Management Research Centre, Department of Physical Medicine and Rehabilitation, Baqiyatallah University, Tehran, Iran
3 Departement of Basic Science, Rehabilitation Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
5 Department of Physical Therapy, Tarbiat Modares University, Tehran, Iran
Article information
  • Asian Journal of Sports Medicine: December 01, 2016, 7 (4); e37008
  • Published Online: October 8, 2016
  • Article Type: Research Article
  • Received: February 8, 2016
  • Revised: May 9, 2016
  • Accepted: May 17, 2016
  • DOI: 10.5812/asjsm.37008

To Cite: Askary-Ashtiani A, Ghanjal A, Motaqi M, Meftahi G H, Hatef B, et al. The Isokinetic and Electromyographic Assessment of Knee Muscles Strength in the Short- and Long-Term Type 2 Diabetes, Asian J Sports Med. 2016 ; 7(4):e37008. doi: 10.5812/asjsm.37008.

Abstract
Copyright © 2016, Sports Medicine Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004; 53(6): 1543-8[PubMed]
  • 2. Andersen H, Poulsen PL, Mogensen CE, Jakobsen J. Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications. Diabetes. 1996; 45(4): 440-5[PubMed]
  • 3. Bokan V. Muscle weakness and other late complications of diabetic polyneuropathy. Acta Clin Croat. 2011; 50(3): 351-5[PubMed]
  • 4. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006; 55(6): 1813-8[DOI][PubMed]
  • 5. I. Jzerman TH , Schaper NC, Melai T, Meijer K, Willems PJ, Savelberg HH. Lower extremity muscle strength is reduced in people with type 2 diabetes, with and without polyneuropathy, and is associated with impaired mobility and reduced quality of life. Diabetes Res Clin Pract. 2012; 95(3): 345-51[DOI][PubMed]
  • 6. Chisari C, Piaggesi A, Baccetti F, Licitra R, Rossi B. Muscle modification in asymptomatic diabetic neuropathy: a surface electromyographic study. Basic Appl Myol. 2002; 12(5): 177-81
  • 7. Hatef B, Ghanjal A, Meftahi GH, Askary-Ashtiani A. Isokinetic and Electromyographic Properties of Muscular Endurance in Short and Long-Term Type 2 Diabetes. Glob J Health Sci. 2016; 8(8): 210-9[DOI][PubMed]
  • 8. Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001; 50(6): 1324-9[PubMed]
  • 9. Halvatsiotis P, Short KR, Bigelow M, Nair KS. Synthesis rate of muscle proteins, muscle functions, and amino acid kinetics in type 2 diabetes. Diabetes. 2002; 51(8): 2395-404[PubMed]
  • 10. Hawley J, Zierath J. Physical activity and type 2 diabetes: therapeutic effects and mechanisms of action. 2008;
  • 11. Marin P, Andersson B, Krotkiewski M, Bjorntorp P. Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care. 1994; 17(5): 382-6[PubMed]
  • 12. Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Lond). 2005; 29 Suppl 2-5[PubMed]
  • 13. Wood RJ, O'Neill EC. Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone. J Nutr Metab. 2012; 2012: 268197[DOI][PubMed]
  • 14. Batsis JA, Buscemi S. Sarcopenia, sarcopenic obesity and insulin resistance. 2011;
  • 15. Andreassen CS, Jakobsen J, Flyvbjerg A, Andersen H. Expression of neurotrophic factors in diabetic muscle--relation to neuropathy and muscle strength. Brain. 2009; 132: 2724-33[DOI][PubMed]
  • 16. Christie A, Greig Inglis J, Kamen G, Gabriel DA. Relationships between surface EMG variables and motor unit firing rates. Eur J Appl Physiol. 2009; 107(2): 177-85[DOI][PubMed]
  • 17. Wang R, Fukuda DH, Stout JR, Robinson EH, Miramonti AA, Fragala MS, et al. Evaluation of Electromyographic Frequency Domain Changes during a Three-Minute Maximal Effort Cycling Test. J Sports Sci Med. 2015; 14(2): 452-8[PubMed]
  • 18. Butugan MK, Sartor CD, Watari R, Martins MC, Ortega NR, Vigneron VA, et al. Multichannel EMG-based estimation of fiber conduction velocity during isometric contraction of patients with different stages of diabetic neuropathy. J Electromyogr Kinesiol. 2014; 24(4): 465-72[DOI][PubMed]
  • 19. Watanabe K, Miyamoto T, Tanaka Y, Fukuda K, Moritani T. Type 2 diabetes mellitus patients manifest characteristic spatial EMG potential distribution pattern during sustained isometric contraction. Diabetes Res Clin Pract. 2012; 97(3): 468-73[DOI][PubMed]
  • 20. Sacchetti M, Balducci S, Bazzucchi I, Carlucci F, Scotto di Palumbo A, Haxhi J, et al. Neuromuscular dysfunction in diabetes: role of nerve impairment and training status. Med Sci Sports Exerc. 2013; 45(1): 52-9[DOI][PubMed]
  • 21. Gomes AA, Onodera AN, Otuzi ME, Pripas D, Mezzarane RA, Sacco IC. Electromyography and kinematic changes of gait cycle at different cadences in diabetic neuropathic individuals. Muscle Nerve. 2011; 44(2): 258-68[DOI][PubMed]
  • 22. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010; 33(12): 147-67[DOI][PubMed]
  • 23. Schellenberg F, Oberhofer K, Taylor WR, Lorenzetti S. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training. Comput Math Methods Med. 2015; 2015: 483921[DOI][PubMed]
  • 24. Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol. 2012; 112(1): 267-75[DOI][PubMed]
  • 25. Lanza IR, Nair KS. Muscle mitochondrial changes with aging and exercise. Am J Clin Nutr. 2009; 89(1): 467S-71S[DOI][PubMed]
  • 26. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J Appl Physiol (1985). 1997; 83(5): 1581-7[PubMed]
  • 27. Sreekumar RNK. Skeletal muscle mitochondrial dysfunction and diabetes. Indian J Med Res. 123(3): 339-410
  • 28. Ena J, Lozano T, Verdu G, Argente CR, Gonzalez VL. Accuracy of ankle-brachial index obtained by automated blood pressure measuring devices in patients with diabetes mellitus. Diabetes Res Clin Pract. 2011; 92(3): 329-36[DOI][PubMed]
  • 29. Smith KA, Gallagher M, Hays AE, Goss FL, Robertson R. Development of the physical activity index as a measure of total activity load and total kilocalorie expenditure during submaximal walking. J Phys Act Health. 2012; 9(6): 757-64[PubMed]
  • 30. Hatef B, Bahrpeyma F, Vaziri P. Muscle isokinetic strength and endurance in short-and long-term type 2 diabetes. Isokinetics and Exercise Science. 2014; 22(4): 295-301
  • 31. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000; 10(5): 361-74[PubMed]
  • 32. Gabriel DA, Christie A, Inglis JG, Kamen G. Experimental and modelling investigation of surface EMG spike analysis. Med Eng Phys. 2011; 33(4): 427-37[DOI][PubMed]
  • 33. Gabriel DA, Kamen G. Experimental and modeling investigation of spectral compression of biceps brachii SEMG activity with increasing force levels. J Electromyogr Kinesiol. 2009; 19(3): 437-48[DOI][PubMed]
  • 34. Hermens HJ, Bruggen TA, Baten CT, Rutten WL, Boom HB. The median frequency of the surface EMG power spectrum in relation to motor unit firing and action potential properties. J Electromyogr Kinesiol. 1992; 2(1): 15-25[DOI][PubMed]
  • 35. Farina D, Fosci M, Merletti R. Motor unit recruitment strategies investigated by surface EMG variables. J Appl Physiol (1985). 2002; 92(1): 235-47[PubMed]
  • 36. Gaster M, Poulsen P, Handberg A, Schroder HD, Beck-Nielsen H. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000; 278(5): 910-6[PubMed]
  • 37. He J, Watkins S, Kelley DE. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes. 2001; 50(4): 817-23[PubMed]
  • 38. Axelson HW, Melberg A, Ronquist G, Askmark H. Microdialysis and electromyography of experimental muscle fatigue in healthy volunteers and patients with mitochondrial myopathy. Muscle Nerve. 2002; 26(4): 520-6[DOI][PubMed]
  • 39. Jansen R, Ament W, Verkerke GJ, Hof AL. Median power frequency of the surface electromyogram and blood lactate concentration in incremental cycle ergometry. Eur J Appl Physiol Occup Physiol. 1997; 75(2): 102-8[DOI][PubMed]
  • 40. Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care. 2006; 29(4): 895-900[PubMed]
  • 41. Giombini A, Menotti F, Laudani L, Piccinini A, Fagnani F, Di Cagno A, et al. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males. Biol Sport. 2015; 32(3): 243-7[DOI][PubMed]
  • 42. Dahmane R, Djordjevic S, Smerdu V. Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods. Med Biol Eng Comput. 2006; 44(11): 999-1006[DOI][PubMed]
  • 43. Garrett WE, Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984; 12(2): 98-103[PubMed]
  • 44. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol (1985). 2004; 96(4): 1486-95[DOI][PubMed]
  • 45. Hatef B, Bahrpeyma F, Mohajeri Tehrani MR. The comparison of muscle strength and short-term endurance in the different periods of type 2 diabetes. J Diabetes Metab Disord. 2014; 13(1): 22[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments