Asian Journal of Sports Medicine

Published by: Kowsar
Uncorrected Proof scheduled for 10 (3)

Correlations Between Vertical Ground Reaction Force, Sagittal Joint Angles, and the Muscle Co-Contraction Index During Single-Leg Jump-Landing

Shunsuke Ohji 1 , * , Junya Aizawa 1 , Kenji Hirohata 1 , Takehiro Ohmi 1 and Kazuyoshi Yagishita 1
Authors Information
1 Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
Article information
  • Asian Journal of Sports Medicine: In Press (In Press); e81771
  • Published Online: July 10, 2019
  • Article Type: Research Article
  • Received: July 6, 2018
  • Revised: November 19, 2018
  • Accepted: May 17, 2019
  • DOI: 10.5812/asjsm.81771

To Cite: Ohji S, Aizawa J, Hirohata K, Ohmi T, Yagishita K. Correlations Between Vertical Ground Reaction Force, Sagittal Joint Angles, and the Muscle Co-Contraction Index During Single-Leg Jump-Landing, Asian J Sports Med. Online ahead of Print ; In Press(In Press):e81771. doi: 10.5812/asjsm.81771.

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, et al. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38(11):2218-25. doi: 10.1177/0363546510373570. [PubMed: 20595545].
  • 2. Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A. In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: Case report. Knee Surg Sports Traumatol Arthrosc. 2003;11(5):307-11. doi: 10.1007/s00167-003-0403-6. [PubMed: 14523613].
  • 3. Yu B, Lin CF, Garrett WE. Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon). 2006;21(3):297-305. doi: 10.1016/j.clinbiomech.2005.11.003. [PubMed: 16378667].
  • 4. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am J Sports Med. 2005;33(4):492-501. doi: 10.1177/0363546504269591. [PubMed: 15722287].
  • 5. Padua DA, Distefano LJ. Sagittal plane knee biomechanics and vertical ground reaction forces are modified following ACL injury prevention programs: A systematic review. Sports Health. 2009;1(2):165-73. doi: 10.1177/1941738108330971. [PubMed: 23015868]. [PubMed Central: PMC3445071].
  • 6. Caulfield B, Garrett M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin Biomech (Bristol, Avon). 2004;19(6):617-21. doi: 10.1016/j.clinbiomech.2004.03.001. [PubMed: 15234486].
  • 7. Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108-15. [PubMed: 1548984].
  • 8. Blackburn JT, Padua DA. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train. 2009;44(2):174-9. doi: 10.4085/1062-6050-44.2.174. [PubMed: 19295962]. [PubMed Central: PMC2657019].
  • 9. Ali N, Robertson DG, Rouhi G. Sagittal plane body kinematics and kinetics during single-leg landing from increasing vertical heights and horizontal distances: Implications for risk of non-contact ACL injury. Knee. 2014;21(1):38-46. doi: 10.1016/j.knee.2012.12.003. [PubMed: 23274067].
  • 10. Ali N, Rouhi G, Robertson G. Gender, vertical height and horizontal distance effects on single-leg landing kinematics: Implications for risk of non-contact ACL injury. J Hum Kinet. 2013;37:27-38. doi: 10.2478/hukin-2013-0022. [PubMed: 24146702]. [PubMed Central: PMC3796838].
  • 11. Mason-Mackay AR, Whatman C, Reid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review. J Sci Med Sport. 2017;20(5):451-8. doi: 10.1016/j.jsams.2015.06.006. [PubMed: 26117159].
  • 12. Fong CM, Blackburn JT, Norcross MF, McGrath M, Padua DA. Ankle-dorsiflexion range of motion and landing biomechanics. J Athl Train. 2011;46(1):5-10. doi: 10.4085/1062-6050-46.1.5. [PubMed: 21214345]. [PubMed Central: PMC3017488].
  • 13. Self BP, Paine D. Ankle biomechanics during four landing techniques. Med Sci Sports Exerc. 2001;33(8):1338-44. [PubMed: 11474336].
  • 14. Podraza JT, White SC. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: Implications for the non-contact mechanism of ACL injury. Knee. 2010;17(4):291-5. doi: 10.1016/j.knee.2010.02.013. [PubMed: 20303276].
  • 15. Tsai LC, McLean S, Colletti PM, Powers CM. Greater muscle co-contraction results in increased tibiofemoral compressive forces in females who have undergone anterior cruciate ligament reconstruction. J Orthop Res. 2012;30(12):2007-14. doi: 10.1002/jor.22176. [PubMed: 22730173].
  • 16. Santello M, McDonagh MJ. The control of timing and amplitude of EMG activity in landing movements in humans. Exp Physiol. 1998;83(6):857-74. [PubMed: 9782194].
  • 17. Sinsurin K, Vachalathiti R, Jalayondeja W, Limroongreungrat W. Knee muscular control during jump landing in multidirections. Asian J Sports Med. 2016;7(2). e31248. doi: 10.5812/asjsm.31248. [PubMed: 27625758]. [PubMed Central: PMC5003310].
  • 18. Croce RV, Russell PJ, Swartz EE, Decoster LC. Knee muscular response strategies differ by developmental level but not gender during jump landing. Electromyogr Clin Neurophysiol. 2004;44(6):339-48. [PubMed: 15473345].
  • 19. Kellis E, Arabatzi F, Papadopoulos C. Muscle co-activation around the knee in drop jumping using the co-contraction index. J Electromyogr Kinesiol. 2003;13(3):229-38. [PubMed: 12706603].
  • 20. Palmieri-Smith RM, Wojtys EM, Ashton-Miller JA. Association between preparatory muscle activation and peak valgus knee angle. J Electromyogr Kinesiol. 2008;18(6):973-9. doi: 10.1016/j.jelekin.2007.03.007. [PubMed: 17498972].
  • 21. Walsh M, Boling MC, McGrath M, Blackburn JT, Padua DA. Lower extremity muscle activation and knee flexion during a jump-landing task. J Athl Train. 2012;47(4):406-13. doi: 10.4085/1062-6050-47.4.17. [PubMed: 22889656]. [PubMed Central: PMC3396300].
  • 22. Aizawa J, Ohji S, Koga H, Masuda T, Yagishita K. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings. J Phys Ther Sci. 2016;28(8):2316-21. doi: 10.1589/jpts.28.2316. [PubMed: 27630422]. [PubMed Central: PMC5011586].
  • 23. Chaouachi A, Padulo J, Kasmi S, Othmen AB, Chatra M, Behm DG. Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging. 2017;37(1):23-9. doi: 10.1111/cpf.12263. [PubMed: 26017182].
  • 24. Gheller RG, Dal Pupo J, Ache-Dias J, Detanico D, Padulo J, dos Santos SG. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Hum Mov Sci. 2015;42:71-80. doi: 10.1016/j.humov.2015.04.010. [PubMed: 25965000].
  • 25. Padulo J, Tiloca A, Powell D, Granatelli G, Bianco A, Paoli A. EMG amplitude of the biceps femoris during jumping compared to landing movements. Springerplus. 2013;2:520. doi: 10.1186/2193-1801-2-520. [PubMed: 24156093]. [PubMed Central: PMC3797910].
  • 26. McLean SG, Walker KB, van den Bogert AJ. Effect of gender on lower extremity kinematics during rapid direction changes: An integrated analysis of three sports movements. J Sci Med Sport. 2005;8(4):411-22. [PubMed: 16602169].
  • 27. Alenezi F, Herrington L, Jones P, Jones R. The reliability of biomechanical variables collected during single leg squat and landing tasks. J Electromyogr Kinesiol. 2014;24(5):718-21. doi: 10.1016/j.jelekin.2014.07.007. [PubMed: 25128206].
  • 28. Belyea BC, Lewis E, Gabor Z, Jackson J, King DL. Validity and intrarater reliability of 2-dimensional motion analysis using a handheld tablet compared to traditional 3-dimensional motion analysis. J Sport Rehabil. 2015;24(4). doi: 10.1123/jsr.2014-0194. [PubMed: 25612081].
  • 29. Dingenen B, Barton C, Janssen T, Benoit A, Malliaras P. Test-retest reliability of two-dimensional video analysis during running. Phys Ther Sport. 2018;33:40-7. doi: 10.1016/j.ptsp.2018.06.009. [PubMed: 30005426].
  • 30. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361-74. [PubMed: 11018445].
  • 31. Iida Y, Kanehisa H, Inaba Y, Nakazawa K. Role of the coordinated activities of trunk and lower limb muscles during the landing-to-jump movement. Eur J Appl Physiol. 2012;112(6):2223-32. doi: 10.1007/s00421-011-2199-2. [PubMed: 21997678].
  • 32. de Britto MA, Carpes FP, Koutras G, Pappas E. Quadriceps and hamstrings prelanding myoelectric activity during landing from different heights among male and female athletes. J Electromyogr Kinesiol. 2014;24(4):508-12. doi: 10.1016/j.jelekin.2014.04.009. [PubMed: 24837628].
  • 33. Falconer K, Winter DA. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr Clin Neurophysiol. 1985;25(2-3):135-49. [PubMed: 3987606].
  • 34. Fauth ML, Petushek EJ, Feldmann CR, Hsu BE, Garceau LR, Lutsch BN, et al. Reliability of surface electromyography during maximal voluntary isometric contractions, jump landings, and cutting. J Strength Cond Res. 2010;24(4):1131-7. doi: 10.1519/JSC.0b013e3181cc2353. [PubMed: 20179648].
  • 35. Yeow CH, Lee PV, Goh JC. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing. Knee. 2009;16(5):381-6. doi: 10.1016/j.knee.2009.02.002. [PubMed: 19250828].
  • 36. Hargrave MD, Carcia CR, Gansneder BM, Shultz SJ. Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. J Athl Train. 2003;38(1):18-23. [PubMed: 12937467]. [PubMed Central: PMC155506].
  • 37. Elias AR, Hammill CD, Mizner RL. Changes in quadriceps and hamstring cocontraction following landing instruction in patients with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2015;45(4):273-80. doi: 10.2519/jospt.2015.5335. [PubMed: 25679342].
  • 38. Santello M. Review of motor control mechanisms underlying impact absorption from falls. Gait Posture. 2005;21(1):85-94. doi: 10.1016/j.gaitpost.2004.01.005. [PubMed: 15536038].
  • 39. Hoch MC, Farwell KE, Gaven SL, Weinhandl JT. Weight-bearing dorsiflexion range of motion and landing biomechanics in individuals with chronic ankle instability. J Athl Train. 2015;50(8):833-9. doi: 10.4085/1062-6050-50.5.07. [PubMed: 26067428]. [PubMed Central: PMC4629940].
  • 40. Blackburn JT, Padua DA. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech (Bristol, Avon). 2008;23(3):313-9. doi: 10.1016/j.clinbiomech.2007.10.003. [PubMed: 18037546].
  • 41. Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D'Ambrosia R. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med. 1988;16(2):113-22. doi: 10.1177/036354658801600205. [PubMed: 3377094].
  • 42. Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech. 1999;32(4):395-400. [PubMed: 10213029].
  • 43. Yeadon MR, King MA, Forrester SE, Caldwell GE, Pain MT. The need for muscle co-contraction prior to a landing. J Biomech. 2010;43(2):364-9. doi: 10.1016/j.jbiomech.2009.06.058. [PubMed: 19840881].
  • 44. Ford KR, van den Bogert J, Myer GD, Shapiro R, Hewett TE. The effects of age and skill level on knee musculature co-contraction during functional activities: A systematic review. Br J Sports Med. 2008;42(7):561-6. doi: 10.1136/bjsm.2007.044883. [PubMed: 18308891]. [PubMed Central: PMC4006930].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments